If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+14x-12=103
We move all terms to the left:
x^2+14x-12-(103)=0
We add all the numbers together, and all the variables
x^2+14x-115=0
a = 1; b = 14; c = -115;
Δ = b2-4ac
Δ = 142-4·1·(-115)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{41}}{2*1}=\frac{-14-4\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{41}}{2*1}=\frac{-14+4\sqrt{41}}{2} $
| 11x-2+25x+2=180 | | 5y2+17=3y2-127 | | Y=16(.32)^x | | 40+60x=100+48x | | 10*3^x-9=9^x | | 13x+156=259 | | v=15+-9 | | g(-7)=21+5 | | -1/3y+2+3y=6 | | 9y=8y+5 | | -4(2x+4=48 | | 2.5d+9.75=6+3.25 | | 17x+4+6x-8=180 | | 2.5d=9.75=6+3.25 | | s/4+26=36 | | -2v^2+18v+(v-7)^2=44 | | 3x−4=8x+6 | | (v-7)^2=2v^2-18v+44=0 | | 15x+28=319 | | 8(0.5y-3)=3 | | 17x+4=6x-8 | | F÷3=48f= | | -07-x/1.2=-0.95 | | (v-7)^2=2v^2-18v+44 | | w/5=101/2 | | 0.6x-5=0.16x+3 | | 2x2+3x=-3x2-2x | | 9x+86=176 | | 42=j÷5j= | | x+.05x=81,288 | | -4y-5-4(-2y-3+8=3 | | .9x=848 |